Determining Asymptotics of Magnetic Fields from Fixed Energy Scattering Data

نویسنده

  • MARK S. JOSHI
چکیده

The problem of recovering the asymptotics of a short range perturbation of the Euclidean Laplacian on R n from xed energy scattering data is studied. It is shown that for n 3 that a magnetic potential is determined, modulo Gauge invariance, by its scattering matrix at a xed non-zero energy. This result also holds for a wide class of scattering manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields

We consider the 3D Pauli operator with nonconstant magnetic field B of constant direction, perturbed by a symmetric matrix-valued electric potential V whose coefficients decay fast enough at infinity. We investigate the low-energy asymptotics of the corresponding spectral shift function. As a corollary, for generic negative V , we obtain a generalized Levinson formula, relating the low-energy a...

متن کامل

Recovering Asymptotics of Metrics from Fixed Energy Scattering Data

The problem of recovering the asymptotics of a short range perturbation of the Euclidean metric on R n from xed energy scattering data is studied. It is shown that if two such metrics, g 1 ; g 2 ; have scattering data at some xed energy which are equal up to smoothing, then there exists a diieomorphism`` xing innnity' such that g 1 g 2 is rapidly decreasing. Given the scattering matrix at two e...

متن کامل

On Inverse Scattering at a Fixed Energy for Potentials with a Regular Behaviour at Infinity

We study the inverse scattering problem for electric potentials and magnetic fields in R, d ≥ 3, that are asymptotic sums of homogeneous terms at infinity. The main result is that all these terms can be uniquely reconstructed from the singularities in the forward direction of the scattering amplitude at some positive energy.

متن کامل

ar X iv : m at h - ph / 0 51 00 50 v 1 1 3 O ct 2 00 5 Completeness of Averaged Scattering Solutions and Inverse Scattering at a Fixed Energy ∗ †

We prove that the averaged scattering solutions to the Schrödinger equation with short-range electromagnetic potentials (V,A) where V (x) = O(|x|), A(x) = O(|x|), |x| → ∞, ρ > 1, are dense in the set of all solutions to the Schrödinger equation that are in L(K) where K is any connected bounded open set in R, n ≥ 2, with smooth boundary. We use this result to prove that if two short-range electr...

متن کامل

Recent Developments in the Qualitative Approach to Inverse Electromagnetic Scattering Theory

We consider the inverse scattering problem of determining both the shape and some of the physical properties of the scattering object from a knowledge of the (measured) electric and magnetic fields due to the scattering of an incident time harmonic electromagnetic wave at fixed frequency. We shall discuss the linear sampling method for solving the inverse scattering problem which does not requi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007